New Smart Bioreactor is Designed and Built at Portland State University

A new technique to stimulate specific beneficial bacteria for Phosphorus and Nitrogen removal was developed by Bashar Al-Daomi at PSU’s Civil & Environmental Engineering Dept. This technology recently won Bashar the final round prize of $5,000 at PSU’s CleanTech Challenge!

By Bashar Al-Daomi — Portland State U. PhD Student, Institute for Sustainable Solutions Fellow

Wastewater is a crucial environmental issue that we deal with every day. If wastewater is left completely or partially untreated and disposed into our rivers and lakes, it will leave behind high concentrations of organic matters, phosphorus and nitrogen. This will pollute and threaten water ecosystems causing risks to aquatic life species due to algal blooming and high oxygen

At the American Water Works Association’s (AWWA) Water Quality Technology Conference in Portland, OR, November 2017, PSU Ph.D. graduate student Bashar Al- Daomi unveiled a new smart bioreactor he and Dr. Bill Fish have designed and created.


Microbes can do a great job of removing phosphorus and nitrogen pollutants from wastewater if we can design a perfect mutual collaboration between lab researchers, wastewater treatment plant operators and microbes. This collaboration provides us a better understanding of microbial metabolism while we support microbes with optimal life conditions (Dissolved oxygen, nutrients, organic carbon such as acetate, temperature, pH, ORP, etc).

In the Water Quality Lab of Dr. Bill Fish, PSU Ph.D. graduate student Bashar Al-Daomi stepped up to the challenge to develop a smart, simple, reliable, and efficient lab reactor. This reactor aims to show how different types of bacteria (phosphorus accumulative organisms PAOs, glycogen accumulative organisms GAOs, and ammonium oxidation bacteria AOB) grow and interact with each other responding to a variety of control conditions. This reactor focuses on simulating and modelling actual advanced wastewater treatment processes by studying at which low level of both oxygen and organic matter can achieve high phosphorus removal within Enhanced Biological Phosphorus Removal processes?


Bashar, working with technical assistance, created this sophisticated, automated research reactor at a reasonable cost and far less expensive than commercial bioreactors on the market. Bashar took a challenge and made it into an opportunity to develop a cheaper and better product. In fact, the need to be frugal became a central part of the innovation since his goal is to make low-cost wastewater treatment available to areas that cannot afford expensive municipal systems.



This lab reactor is smart since it operates itself automatically based on using timers, sensors, and controllers connected together in one control unit. This unit helps to control and adjust pH and dissolved oxygen measurements to match with different microbial needs. It also collects accurate lab data and builds a trustable database for developing bio-mathematical models.


This reactor can run as a Sequential Batch Reactor SBR that can cover cycles: Anaerobic, Anoxic, Aerobic and sedimentation stages by relying on time not space (controlling the time sequences between each stage). Also, it can be run as one of series of SBRs within continues treatment systems.


This lab system would be beneficial for our students at PSU on conducting capstone and graduate students’ projects besides some applications for environmental engineering course at CEE.


Since the Pacific Northwest-American Water Works Association P